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It is shown that expectation values of Poisson-distributed random numbers exist

not only for the well known positive integer powers but also for negative integer

powers. A recursion formula for the calculation of expectation values of powers

differing by one is given. This recursion formula helps to find an analytical

representation for both positive and negative integer powers in terms of the

hypergeometric function.

1. Introduction

A non-negative integer random number x that is distributed

according to the normalized probability density function

pðxÞ ¼ expð��Þ
�x

x!
ð1Þ

with parameter � is called a Poisson-distributed random

number, or, in short, a Poisson number.

There exists a vast amount of literature about the Poisson

distribution, its applications in sciences and technology and its

mathematical properties. A classic textbook on this topic is by

Haight (1967), which discusses the elementary properties and

generalizations of the Poisson distribution, and also its appli-

cations in industry, agriculture and ecology, biology, medicine,

sociology, demography and more.

The first moments about the origin are given in virtually any

textbook treating the Poisson distribution. They are calculated

by means of evaluating directly

hxni ¼
P1
x¼0

xnpðxÞ; n 2 f0; 1; 2; 3; . . .g ð2Þ

leading to

hx1
i ¼ �; ð3Þ

hx2
i ¼ �2

þ �; ð4Þ

hx3
i ¼ �3

þ 3�2
þ �; ð5Þ

hx4i ¼ �4 þ 6�3 þ 7�2 þ � ð6Þ

and so on. Please note that a lower summation index in

equation (2) starting with one instead of zero does not alter

the results for n> 0.

The expectation values may also be calculated by using a

well known recursion formula that involves differentiation

with respect to � (see e.g. Haight, 1967):

hxnþ1i ¼ �hxni þ �
d

d�
hxni

� �
; n 2 f0; 1; 2; 3; . . .g ð7Þ

with normalization hx0i ¼ 1. Although in the literature this

recursion formula is found only for non-negative values of n, it

is also valid for all negative integer values n � �2, i.e. all

integer values of n that do not make the power of the

expectation value equal to zero.

2. Another recursion formula

A different recursion formula equivalent to equation (7), but

simpler, as it does not involve derivatives, is given by

hxnþ1i ¼ �hðxþ 1Þni; n 2 f. . . ;�3;�2; 0; 1; 2; . . .g; ð8Þ

i.e. any integer number n is allowed except for the one which

makes the power on the left-hand side equal to zero. The

derivation of this recursion formula is given in Appendix A.

3. Revision of known expectation values

With this, the expectation values [equation (3) and following]

may be rewritten in the form

hxnþ1
i ¼ � expð��Þ

X1
x¼0

ðxþ 1Þn
�x

x!
; n 2 f0; 1; 2; 3; . . .g:

ð9Þ

For example, for n ¼ 0, the sum evaluates to expð�Þ thus

leading to hxi ¼ �. The sum on the right-hand side can be

rewritten in terms of the hypergeometric function:

hxnþ1
i ¼ � expð��Þ nFn

2;...;2
1;...;1ð�Þ; n 2 f0; 1; 2; 3; . . .g: ð10Þ

Again, for n ¼ 0 the hypergeometric function collapses to

expð�Þ leading to the correct result hxi ¼ �. The general form

of the hypergeometric function is

pFq

a1;...;ap

b1;...;bq
ð�Þ ¼

X1
k¼0

ða1Þkða2Þk . . . ðapÞk

ðb1Þkðb2Þk . . . ðbqÞk

�k

k!
ð11Þ

with upper coefficients ai, i 2 f1; 2; . . . ; pg and lower coeffi-

cients bj, j 2 f1; 2; . . . ; qg. These determine the Pochhammer

symbols (rising factorials)
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ðaiÞk ¼
�ðai þ kÞ

�ðaiÞ
; i 2 f1; . . . pg ð12Þ

and ðbjÞk, j 2 f1; . . . ; qg. The numbers p; q and coefficients ai

and bj have been chosen such that the term ðxþ 1Þn, n> 0 in

equation (9) is generated by the hypergeometric function in

accordance with equation (8).

4. Extension to negative integer powers

Up to this point, not much has been accomplished, as the

expectation values have been rewritten only in an abstract

way. Equation (8), however, also holds for negative powers,

n � �2, leading to expectation values of negative powers of a

Poisson-distributed random number.

To see this, it is better to transform equation (8) to a

formally more symmetrical appearance with the index shifted

by minus one and realising that this equation holds for all

positive and negative integers.

hxn
i ¼ �hðxþ 1Þn�1

i; n 2 f�1;�2;�3; . . .g ð13Þ

when using the new definition

hxni :¼
P1
x¼1

xnpðxÞ; n 2 f�1;�2;�3; . . .g ð14Þ

derived from equation (2) where only the lower summation

index has been changed. The new definition equation (14) is

identical to equation (2) in the range of validity of equation

(2), but it also embraces negative integer powers.

In the case of negative integer powers, the coefficients a and

b of the hypergeometric function switch roles in order to

generate terms of the type ðxþ 1Þ�n, n> 0 in an equation

similar to equation (9),

hx�n
i ¼ � expð��Þ

X1
x¼0

ðxþ 1Þ�n�1 �
x

x!
; n 2 f1; 2; 3; . . .g; ð15Þ

and in accordance with equation (8), leading to

x�nh i ¼ � expð��Þ jn�1jFjn�1j
1;...;1
2;...;2
ð�Þ; n> 0: ð16Þ

A potential application is in the calculation of quality

indicators for data from X-ray and neutron diffraction

experiments, where it is useful to calculate expectation values

e.g. of the kind h1=Ii, where I is an intensity observation of the

diffracted beam (Henn & Meindl, 2010).

The following table summarizes the results for the calcu-

lation of integer powers of Poisson numbers:

hxni ¼ � expð��Þ n�1Fn�1
2;...;2
1;...;1ð�Þ

..

.
¼ ..

.

hx3i ¼ � expð��Þ 2F2
2;2
1;1ð�Þ

hx2
i ¼ � expð��Þ 1F1

2
1ð�Þ

hx1
i ¼ � expð��Þ 0F0ð�Þ

hx�1
i ¼ � expð��Þ 2F2

1;1
2;2ð�Þ

hx�2
i ¼ � expð��Þ 3F3

1;1;1
2;2;2ð�Þ

..

.
¼ ..

.

hx�ni ¼ � expð��Þ jn�1jFjn�1j
1;...;1
2;...;2
ð�Þ: ð17Þ

The expectation value of any integer power n 6¼ 0 is

expressed by the common factor � expð��Þ times a hyper-

geometric function with p ¼ q ¼ jn� 1j and ai � 2, bi � 1,

i 2 f1; . . . ; pg for n> 0, and ai � 1, bi � 2 for n< 0.

5. Conclusion

Expectation values of negative integer powers of Poisson

numbers exist despite possible concerns about problematic

singular terms with zero in the denominator. These terms do

not enter the calculation directly. The appearance of the

number zero, however, is not neglected, as the full probability

density function [equation (1)] is used in the calculation of the

expectation values, i.e. the probablity density function is not

renormalized to values larger than zero. This holds for positive

and negative powers; they are treated in the same way.

Expectation values of positive and negative integer powers of

a Poisson number are expressed consistently with the help of

the hypergeometric function.

APPENDIX A
Recursion formula

hxni :¼ expð��Þ
X1
x¼1

xn �
x

x!

¼ expð��Þ�
X1
x¼1

xn�1 �x�1

ðx� 1Þ!

¼ expð��Þ�
X1
y¼0

ðyþ 1Þn�1 �
y

y!

¼ expð��Þ�
X1
x¼0

ðxþ 1Þn�1 �
x

x!

¼ �hðxþ 1Þn�1
i:

In line one, the expectation value of any integer power is

defined such that it coincides with the usual definition for

positive powers and allows for negative powers as well without

generating undefined expressions with zero in the denomi-

nator. The only restriction to be made is n 6¼ 0 [this could be

circumvented by adding a Kronecker delta �n;0 to the sum,

leading to hxni ¼ �hðxþ 1Þn�1
i þ expð��Þ�n;0]. In line three

the variable is substituted ðx� 1Þ ! y and the limits are

changed accordingly. In line four the variable name is changed

again y! x.
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